


The partition is only exceptionally related to the data available unlike the construction of classical

univariate splines whose knot placement is often data driven. Our construction leads to epi-splines

and fundamental approximation results given in the next subsection. The subsequent subsection turns

to the broader question of evolving criteria and constraints driven by changes in approximations and

information growth. We conclude the section with a series of estimates of the epi-distance between two

epi-splines as well as a discussion of connections with other modes of convergence.

3.1 Epi-splines

Approximation of lsc functions is achieved by lsc epi-splines that are piecewise polynomial functions

defined on a partition of IRn, or a subset thereof. Specific details are given next. We use the notation

clS to denote the closure of a subset S.

3.1 Definition (partition) A finite collection R1, R2, ..., RN of open subsets of IRn is a partition of a

closed set B ⊆ IRn if ∪N
k=1 clRk = B and Rk ∩Rl = ∅ for all k ̸= l.

We observe that the definition abuses slightly standard terminology by having the subsets R1, ..., RN

open and ∪N
k=1Rk ̸= B. However, the focus on open sets simplifies the following exposition.

We adopt a “total degree” convention and say that a polynomial in n dimensions is of total degree p if

it is expressed as a finite sum of polynomial terms each having the sum of the powers of the variables

being no larger than p. Another convention would have had only minor consequences for the following

results. The set of all such polynomials is denoted by polyp(IRn). We note that the total number of

terms in such a polynomial is at most

np := (n+ p)!/(n!p!).

Consequently, every polynomial in polyp(IRn) is given by np real parameters. For any f : IRn → IR, we

adopt the notation

lim inf
x′→x

f(x′) := lim
δ↓0

[
inf

x′∈IB(x,δ)
f(x′)

]
,

where

IB(x, δ) := {x′ ∈ IRn | ∥x′ − x∥ ≤ δ}.

Informally, lim infx′→x f(x
′) is the smallest value of f near x. We let ρIB := IB(0, ρ) and also use the

same notation for balls in other dimensions too as the meaning will be clear from the context. Moreover,

IN := {1, 2, ...} and IN0 := {0} ∪ IN .

3.2 Definition (lsc epi-splines) A (lsc) epi-spline s : IRn → IR of order p ∈ IN0, with partition

R = {Rk}Nk=1 of a closed set B ⊆ IRn, is a function that

on each Rk, k = 1, ..., N , is polynomial of total degree p,

has s(x) = ∞ for x ̸∈ B, and

for every x ∈ IRn, has s(x) = lim inf
x′→x

s(x′).
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The family of all such epi-splines is denoted by e-splpn(R).

We stress that B in Definition 3.2 might very well be the whole of IRn or some unbounded subset. As

the name indicates, lsc epi-splines are indeed lsc functions, which trivially follows from the definition

of such functions.

3.3 Proposition For any partition R of a closed set B ⊆ IRn, p ∈ IN0, and n ∈ IN , e-splpn(R) ⊂
lsc-fcns(B) ⊆ lsc-fcns(IRn).

We deal exclusively with lsc epi-splines and systematically drop “lsc” in the following. Since an s ∈
e-splpn(R), with R = {Rk}Nk=1, involves N polynomials of total degree p, it is fully characterized by

ne := Nnp = N(n+ p)!/(n!p!) parameters.

We next show that epi-splines of any order can approximate lsc functions to an arbitrary level of

accuracy. However, this requires a refinement of the partition as follows:

3.4 Definition (infinite refinement) A sequence {Rν}∞ν=1 of partitions of a closed set B ⊆ IRn, with

Rν = {Rν
k}N

ν

k=1, is an infinite refinement if

for every x ∈ B and ε > 0, there exists ν̄ ∈ IN such that

Rν
k ⊂ IB(x, ε) for every ν ≥ ν̄ and k satisfying x ∈ clRν

k.

In the case of a compact B, there are obvious choices of infinite refinements. A simple example of an

infinite refinement on (unbounded) IR is to take Nν = 2ν + 2, Rν
1 = (−∞,−

√
ν), Rν

k = ((k − ν −
2)/

√
ν, (k − ν − 1)/

√
ν) for k = 2, 3, ..., 2ν + 1, and Rν

2ν+2 = (
√
ν,∞). Then ν̄ > max{x2, ε−2} satisfies

the above condition. Obviously, much flexibility exists in constructing such infinite refinements. We

now state a density result, which as elsewhere in the paper is with respect to the epi-topology.

3.5 Theorem (dense approximation) For any p ∈ IN0 and {Rν}∞ν=1, an infinite refinement of a closed

set B ⊆ IRn,
∞∪
ν=1

e-splpn(Rν) is dense in lsc-fcns(B).

Proof: Let s0 ∈ lsc-fcns(B) and Rν = {Rν
k}N

ν

k=1. It suffices to construct a sequence of epi-splines of

order p = 0. For every ν ∈ IN and Rν
k, k = 1, 2, ..., Nν , we define

σν(Rν
k) :=


infx∈clRν

k
s0(x) if infx∈clRν

k
s0(x) ∈ [−ν, ν]

ν if infx∈clRν
k
s0(x) > ν,

−ν otherwise

and construct sν : IRn → IR as follows:

sν(x) := min
k=1,2,...,Nν

{
σν(Rν

k)
∣∣∣ x ∈ clRν

k

}
, x ∈ B,
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and sν(x) = ∞ for x ̸∈ B. Clearly, sν is constant on eachRν
k, k = 1, 2, ..., Nν and satisfies lim infx′→x s

ν(x′) =

sν(x) for all x ∈ IRn. Hence, sν ∈ e-spl0n(Rν) and consequently also in e-splpn(Rν) for p ∈ IN . We next

show that the two conditions of Proposition 2.1 holds. Let x ∈ IRn be arbitrary. By lower semicontinu-

ity of s0, for every ε > 0 there exists δ > 0 such that s0(x′) ≥ s0(x) − ε whenever x′ ∈ IB(x, δ). Since

{Rν}∞ν=1 is an infinite refinement, there also exists a ν̄ such that Rν
k ⊂ IB(x, δ) for every ν ≥ ν̄ and k

satisfying x ∈ clRν
k. Hence, there exists a neighborhood of x on which sν ≥ max{s0(x)− ε,−ν} for all

ν ≥ ν̄. Thus, for every sequence xν → x,

liminfν s
ν(xν) ≥ liminfν max{s0(x)− ε,−ν} = s0(x)− ε.

Since ε is arbitrary, lim inf sν(xν) ≥ s0(x) and condition a) of Proposition 2.1 holds. For b), simply

set xν = x for all ν. If x ̸∈ B, then sν(xν) = s0(x) = ∞. If x ∈ B and s0(x) > −∞, then

sν(x) ≤ min{s0(x), ν} for all ν sufficiently large. If x ∈ B and s0(x) = −∞, then sν(xν) = sν(x) = −ν.
From this follows,

limsupν s
ν(xν) = limsupν s

ν(x) ≤ s0(x),

which concludes the proof.

A close examination shows that one can consider only rational epi-splines of e-spl0n(Rν) in the proof

of Theorem 3.5, i.e., functions s : IRn → IR with s(x) = qk for x ∈ Rν
k, qk a rational constant, k =

1, 2, ..., Nν . Specifically, in that proof one can replace σν(Rν
k) = infx∈clRν

k
s0(x) by σν(Rν

k) equals any

rational number in [max{−ν, infx∈clRν
k
s0(x) − 1/ν}, infx∈clRν

k
s0(x)]. This implies only minor changes

in the proof and we obtain the next result.

3.6 Corollary (separability of the lsc functions) For p ∈ IN0 and {Rν}∞ν=1, an infinite refinement

of a closed set B ⊆ IRn, (lsc-fcns(B), dl) is separable, with the rational epi-splines of ∪∞
ν=1e-spl

0
n(Rν)

furnishing a countable dense subset.

We observe that the restrictions to subsets of lsc functions does not automatically lead to similar

density results as the following simple example shows. The 0th-order epi-splines consist of piecewise

constant functions and the continuous 0th-order epi-splines are therefore simply the constant functions.

Consequently, the continuous 0th-order epi-splines cannot be dense in the space of continuous functions.

Often, the choice of partition can also lead to the situation that every continuous epi-spline, regardless

of order, is simply a constant function. An example is the partition of IR2 into R1 = {x | ex1 > x2}
and R2 = {x | ex1 < x2}. Two polynomials defined on R1 and R2, respectively, cannot coincide on

{x | ex1 = x2} without being identical everywhere. The situation further complicates with restrictions

to continuity of derivatives. We here give a result for a partition consisting of simplexes. We recall

that a simplex S in IRn is the convex hull of n+ 1 points x0, x1, ..., xn ∈ IRn, with x1 − x0, x2 − x0, ...,

xn − x0 linearly independent. We start with the case when only a compact subset of IRn needs to be

partitioned.

3.7 Definition (simplicial complex partition of compact set.) A partition R1, R2, ..., RN of IRn is a

simplicial complex partition of a compact set B ⊂ IRn if clR1, ..., clRN are simplexes.

7



As usual, we denote by C0(B) the continuous functions on B ⊆ IRn. This leads us to the following

density result for continuous functions, which holds for orders p ≥ 1.

3.8 Theorem (dense approximation of continuous functions on compact set) For any p ∈ IN and

{Rν}∞ν=1, an infinite refinement of a compact set B ⊂ IRn consisting of simplicial complex partitions of

B,
∞∪
ν=1

e-splpn(Rν) ∩ C0(B) is dense in C0(B).

Proof: Let s0 ∈ C0(B) and Rν = {Rν
k}N

ν

k=1. It suffices to construct a sequence of epi-splines of order

p = 1. For k = 1, ..., Nν , let qνk be the unique affine function on IRn that coincides with the values of s0

at the n+1 extreme points of Rν
k. We define sν to be the epi-spline with partition Rν given by the affine

functions qνk on Rν
k, k = 1, ..., N , which is then of first order. We next consider the continuity of sν .

Consider a facet5 {x ∈ IRn | x ∈ clRν
k ∩clRν

l }, k ̸= l, which is necessarily bounded. By construction, qνk
and qνl both coincide with the value of s0 at the n extreme points of the facet. Since qνk and qνl are affine,

they must coincide on the entire facet. Consequently, sν is continuous and in e-splpn(Rν) for p ∈ IN .

We next show that the two conditions of Proposition 2.1 holds. Let x ∈ B be arbitrary. By continuity

of s0, for every ε > 0 there exists δ > 0 such that |s0(x′)− s0(x)| < ε whenever x′ ∈ IB(x, δ)∩B. Since

{Rν}∞ν=1 is an infinite refinement, there also exists a ν̄ such that Rν
k ⊂ IB(x, δ) for every ν ≥ ν̄ and

k satisfying x ∈ clRν
k. We find that minx′∈IB(x,δ)∩B s

0(x′) ≤ qνk ≤ maxx′∈IB(x,δ)∩B s
0(x′) for all every

ν ≥ ν̄ and k satisfying x ∈ clRν
k. Hence, there exists a neighborhood S of x where |sν(x′)− s0(x)| ≤ ε

for all ν ≥ ν̄ and x′ ∈ S ∩B. This and the fact that both sν and s0 are infinity beyond B, we find that

for every sequence xν → x,

liminfν s
ν(xν) ≥ s0(x)− ε.

Since ε is arbitrary, lim inf sν(xν) ≥ s0(x) and condition a) of Proposition 2.1 holds. For b), simply set

xν = x for all ν and observe that sν(x) ≤ s0(x) + ε for all ν ≥ ν̄. From this follows,

limsupν s
ν(xν) = limsupν s

ν(x) ≤ s0(x) + ε.

Again, since ε is arbitrary condition b) follows, which concludes the proof.

The case of partition of the whole of IRn requires additional notation. For x = (x1, ..., xn) ∈ IRn, we

use the notation x−i to denote the (n− 1)-dimensional vector that excludes the ith component of x.

3.9 Definition (simplex cylinder.) A simplex cylinder S in IRn generated by a simplex S′ in IRn−1

and the interval [η1, η2] ⊂ IR is the set {x ∈ IRn | x−i ∈ S′, xi ∈ [η1, η2]} for some i. We say that S′ is

the base of S.

3.10 Definition (simplicial complex partition of IRn.) A partition R1, R2, ..., RN of IRn is a simplicial

complex partition of IRn if for a box B = [l1, u1] × [l2, u2] × ... × [ln, un], with −∞ < li < ui < ∞,

i = 1, 2, ..., n, and Ns, Nc, Nr ∈ IN , with Ns +Nc +Nr = N , we have that

5We recall that a facet of an n-dimensional simplex is an (n − 1)-dimensional set defined by one of the faces of the
simplex.
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a) clR1, ..., clRNs are simplexes and ∪Ns
k=1 clRk = B

b) RNs+1, ..., RNs+Nc are simplex cylinders generated by the (n− 1)-dimensional simplexes formed by

the intersection of Rk, for some k = 1, ...Ns, and a facet of B {x ∈ IRn | lj ≤ xj ≤ uj , j ̸= i, xi = li},
for some i = 1, ..., n, and the interval [−∞, li] as well as by the simplexes formed by the intersection

of Rk, for some k = 1, ...Ns, and {x ∈ IRn | lj ≤ xj ≤ uj , j ̸= i, xi = ui} for some i = 1, ..., n, and

the interval [ui,∞].

c) RNs+Nc+1, ..., RN are unbounded n-dimensional hyperrectangles given by the n-fold cartesian prod-

uct of intervals of the forms [li, ui], [ui,∞), and (−∞, li], i = 1, ..., n, each using at most n − 2

intervals of the form [li, ui].

A density result for continuous functions on IRn follows next.

3.11 Theorem (dense approximation of continuous functions on IRn) For any p ∈ IN and {Rν}∞ν=1,

an infinite refinement on IRn consisting of simplicial complex partitions of IRn,

∞∪
ν=1

e-splpn(Rν) ∩ C0(IRn) is dense in C0(IRn).

Proof: Let s0 ∈ C0(IRn) and Rν = {Rν
k}N

ν

k=1, with N
ν
s and Nν

c the number of simplexes and simplex

cylinders, respectively. Again, it suffices to construct a sequence of epi-splines of order p = 1. For

k = 1, ..., Nν
s , let q

ν
k be the unique affine function on IRn that coincides with the values of s0 at the

n + 1 extreme points of Rν
k. For k = Nν

s + 1, ..., Nν
s + Nν

c , let q
ν
k be the unique affine function on

IRn that coincides with the values of s0 at the n extreme points of Rν
k and that is constant in the

directions perpendicular to the base of the simplex cylinder Rν
k. For k = Nν

s + Nν
c + 1, ..., N , Rν

k are

hyperrectangles with n, n− 1, ...3, or 2 unbounded directions. If the number of unbounded directions

of such Rν
k is m, then Rν

k has n−m+1 extreme points. Let qνk be the unique affine function on IRn with

value of s0 at the extreme points of Rν
k and that is constant in the directions of unboundedness. We

define sν to be the epi-spline given by the affine functions qνk , k = 1, ..., N , which is then of first order.

We next consider the continuity of sν . First consider a facet {x ∈ IRn | x ∈ clRν
k ∩ clRν

l }, k ̸= l, that is

bounded. By construction, qνk and qνl both coincide with the value of s0 on the n extreme points of the

facet. Since qνk and qνl are affine, the must coincide on the whole facet. Second consider an unbounded

facet {x ∈ IRn | x ∈ clRν
k ∩ clRν

l }, k ̸= l. By construction, qνk and qνl both coincide with the value of s0

on the extreme points of the facet. This fact and the constancy of qνk and qνl in unbounded directions

imply that qνk and qνl coincide on the whole facet. Consequently, sν is continuous and in e-splpn(Rν) for

p ∈ IN . We next show that the two conditions of Proposition 2.1 holds. Let x ∈ IRn be arbitrary. By

continuity of s0, for every ε > 0 there exists δ > 0 such that |s0(x′)− s0(x)| < ε whenever x′ ∈ IB(x, δ).

Since {Rν}∞ν=1 is an infinite refinement, there also exists a ν̄ such that Rν
k ⊂ IB(x, δ) for every ν ≥ ν̄

and k satisfying x ∈ clRν
k. Thus minx′∈IB(x,δ) s

0(x′) ≤ qνk ≤ maxx′∈IB(x,δ) s
0(x′) for all every ν ≥ ν̄ and

k satisfying x ∈ clRν
k and there exists a neighborhood S of x where |sν(x′) − s0(x)| ≤ ε for all ν ≥ ν̄

and x′ ∈ S. Consequently, for every sequence xν → x,

liminfν s
ν(xν) ≥ s0(x)− ε.
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Since ε is arbitrary, lim inf sν(xν) ≥ s0(x) and condition a) of Proposition 2.1 holds. For b), simply set

xν = x for all ν and observe that sν(x) ≤ s0(x) + ε for all ν ≥ ν̄. From this follows,

limsupν s
ν(xν) = limsupν s

ν(x) ≤ s0(x) + ε.

Again, since ε is arbitrary condition b) follows, which concludes the proof.

We end the subsection with a discussion of “decomposition” of epi-splines on IRn into sums of those

defined on a lower-dimensional space. For given p, n ∈ IN and x ∈ IRn, there are
(
n
p

)
subvectors of x

with p components. We denote by x[j], j = 1, ...,
(
n
p

)
, these subvectors. The next theorem provides a

decomposition of an epi-spline in terms of lower-dimensional polynomials.

3.12 Theorem (decomposition.) For every s ∈ e-splpn(R), with n > p and R = {Rk}Nk=1, and k =

1, 2, ..., N , there exist qk ∈ polyp(IRn) and qk,j ∈ polyp(IRp), j = 1, 2, ...,
(
n
p

)
, such that

s(x) = qk(x) =

(np)∑
j=1

qk,j(x[j]), for all x ∈ Rk.

Proof: The first equality follows trivially from the definition of epi-splines. A polynomial qk(x) is the

sum of np terms each involving at most p components of x. A term involving xj1 , ..., xjp , say, is also part

of the description of a polynomial of total degree p in the p-dimensional subspace of IRn corresponding

to dimensions j1, ..., jp. Since there are
(
n
p

)
ways of selecting such subspaces, the second equality

follows.

Theorem 3.12 decomposes n-dimensional polynomials into sums of p-dimensional polynomials. Using

similar arguments as in this theorem’s proof, we obtain a “one-dimensional reduction” as stated next.

3.13 Corollary For every s ∈ e-splpn(R), with n > p and R = {Rk}Nk=1, and k = 1, 2, ..., N , there exist

qk,i ∈ polyp(IRn−1), i = 1, 2, ..., n, such that

s(x) =

n∑
i=1

qk,i(x−i), for all x ∈ Rk.

3.2 Evolving and Approximating Problems

The previous subsection deals with the approximation of lsc-fcns(IRn) by e-splpn(R). This lays the

foundation for approximating the infinite-dimensional (FIP ) by one involving a finite number of pa-

rameters. In practice, however, data and extrinsic information might accumulate gradually and the

criterion functional and constraints might also need to be approximated, which lead to a family of

evolving function identification problems:

(FIP ν) : minψν(s) such that s ∈ F ν ∩ Sν ,
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with ψν : F → IR being an approximate criterion functional, possibly representing an incomplete data

set of size ν, F ν ⊆ F being an approximate constraint set that substitutes F using currently avail-

able information as well as computationally required approximations, and Sν ⊆ e-splpn(R) ∩ F . Since

epi-splines are characterized by a finite number of parameters, (FIP ν) is in one-to-one correspondence

with an optimization problem in a (finite-dimensional) Euclidean space. If the approximations are

constructed properly, one might hope that solutions of (FIP ν) approximate solutions of (FIP ). This

property is ensured by the next results under standard conditions. First, however, we need to recall an

extended notion of epi-convergence.

Since we not only need to deal with epi-convergence of functions in lsc-fcns(IRn), but also of the

extended real-valued functionals defined on lsc-fcns(IRn), giving rise to (FIP ) and (FIP ν), we provide

a definition of epi-convergence of the evolving problems (FIP ν) to the limiting problem (FIP ); see [2]

for further details about epi-convergence of functionals defined on metric spaces.

3.14 Definition A sequence of evolving problems {(FIP ν)}ν∈IN epi-converges to an actual problem

(FIP ) if

a) for every sequence {sν}ν∈K , with K an infinite subset of IN , sν ∈ F ν ∩ Sν , and dl(sν , f) → 0, we

have that f ∈ F and liminfν ψ
ν(sν) ≥ ψ(f);

b) for every f ∈ F , there exists a sequence {sν}ν∈IN , with sν ∈ F ν ∩ Sν , such that dl(sν , f) → 0 and

limsupν ψ
ν(sν) ≤ ψ(f).

With the perspective that (FIP ν) is an approximation of (FIP ), we give two results that justify the

use of an epi-spline obtained from (FIP ν) as an approximation of an actual function given by (FIP ).

Epi-convergence of (FIP ν) to the actual problem (FIP ) is the central property. We denote the optimal

values of (FIP ) and (FIP ν) by V and V ν , respectively.

3.15 Theorem (convergence of minimizers [2, Theorem 2.5].) Suppose that {(FIP ν)}ν∈IN epi-converges

to (FIP ), sk minimizes (FIP νk), k ∈ IN , and dl(sk, f) → 0. Then, f is a minimizer of (FIP ) and

limV νk = V .

We next give a sufficient condition for epi-convergence of (FIP ν) to the actual problem (FIP ). We

recall that ψν converges continuously to ψ relative to F if for every f ∈ F and sequence sν → f , with

sν ∈ F , ψν(sν) → ψ(f). Let intS denote the interior of a set S.

3.16 Theorem (sufficient condition for epi-convergence.) If ψν converges continuously to ψ relative

to F , ∪ν∈INSν is dense in F , and F ν converge6 to F = cl(intF ), then {(FIP ν)}ν∈IN epi-converges to

(FIP ).

Proof. We here follow the argument of Theorem 2.5 of [30], but include it for completeness. We

first consider a) in Definition 3.14. For {sν}ν∈K , with K an infinite subset of IN , sν ∈ F ν ∩ Sν , and

6In the sense of Painlevé-Kuratowski; see footnote of §2 and [26, Chapter 4].
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dl(sν , f) → 0, we immediately find that f ∈ F from the assumption that F ν → F . In view of the

continuous convergence of ψν to ψ, we establish part a). Second, we consider part b) and let f ∈ F be

arbitrary. Since F = cl(intF ), there exists a sequence {fµ}µ∈IN ⊂ intF such that dl(fµ, f) → 0. For

each µ, the facts that ∪ν∈INSν is dense in F , F ν converges to F , and fµ belongs to an open subset

of F imply that there exists a sequence {sµ,ν}∞ν=νµ ⊂ F ν ∩ Sν such that dl(sµ,ν , fµ) → 0 as ν → ∞.

Consequently, we can construct a sequence {ν∗µ}µ∈IN such that ν∗µ+1 > ν∗µ, ν
∗
µ ≥ max{νµ, νµ+1}, and

dl(sµ,ν , fµ) ≤ 1/µ for all ν ≥ ν∗µ and µ. For arbitrary ε > 0, there exists therefore an integer µ0 ≥ 2/ε

such that for all ν ≥ ν∗µ and µ > µ0,

dl(fµ, f) ≤ ε/2 and dl(sµ,ν , fµ) ≤ ε/2.

We construct the sequence {sν}∞ν=ν1 ⊂ F ν ∩ Sν by setting

sν = sµ,ν with µ satisfying ν ∈ {ν∗µ−1 + 1, ν∗µ−1 + 2, ..., ν∗µ}.

Then for every ν > ν∗µ0
and some µν > µ0,

dl(sν , f) = dl(sµν ,ν , f) ≤ dl(sµν ,ν , fµν ) + dl(fµν , f) ≤ ε/2 + ε/2 = ε.

Consequently, dl(sν , f) → 0 and ψν(sν) → ψ(f) by continuous convergence, which establish part b).

We note that the constraint qualification F = cl(intF ), i.e., F is solid, avoids “isolated” feasible points

that cannot easily be approximated.

3.3 Estimating Epi-Distances

We next provide estimates of epi-distances, especially between epi-splines, and make connections be-

tween epi-convergence and other modes of convergence. It is immediately clear from [26, Proposition

7.15] that uniform convergence implies epi-convergence, which we utilize repeatedly below. However,

the converse fails as illustrated below. In fact, epi-convergence can be viewed as a one-sided convergence.

3.17 Theorem (epi-distance estimates) For s, s′ ∈ e-splpn(R), with R = {Rk}Nk=1, one has for any

ρ ≥ 0,

(i) dl(s, s′) ≤ ∥s− s′∥∞ and dlρ(s, s
′) ≤ ∥s− s′∥∞

(ii) dl(s, s′) ≤ max
k=1,...,N

sup
x∈Rk

|s(x)− s′(x)| and dlρ(s, s
′) ≤ max

k=1,...,N
sup
x∈Rk

|s(x)− s′(x)|.

Proof: We first consider dlρ(s, s
′). For any x̄ = (x, x0) ∈ ρIB ⊂ IRn+1, d(x̄, epi s) ≤ d(x̄, epi s′) + ∥s −

s′∥∞. Reversing the roles of s and s′ yields that |d(x̄, epi s) − d(x̄, epi s′)| ≤ ∥s − s′∥∞. Consequently,

dlρ(s, s
′) ≤ ∥s− s′∥∞. Since

∫∞
0 e−ρdρ = 1, we also conclude that the first part of item (i) holds. From

(i) it is clear that item (ii) would hold with Rk replaced by clRk. The “closure” is superfluous for

the following reason. For every x0 ∈ IRn there exists a sequence xν → x0 and k∗ ∈ {1, 2, ..., N} such
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that xν ∈ Rk∗ for all ν and limν s
′(xν) = s′(x0) by the definition of epi-splines and openness of Rk,

k = 1, ..., N . Since s(x0) = lim infx′→x0 s(x′) and s is continuous on Rk∗ , it then follows that

s(x0)− s′(x0) ≤ limν s(x
ν)− limν s

′(xν) ≤ sup
x∈Rk∗

|s(x)− s′(x)|.

Reversing the roles of s and s′, yields that

s(x0)− s′(x0) ≥ − sup
x∈Rk∗

|s(x)− s′(x)|.

Consequently,

|s(x0)− s′(x0)| ≤ max
k=1,...,N

sup
x∈Rk

|s(x)− s′(x)|,

which, because x0 ∈ IRn is arbitrary, completes the proof of item (ii) after again using the fact that∫∞
0 e−ρdρ = 1.

We observe that since s− s′ is also a polynomial on Rk, say q ∈ polyp(IRn),

sup
x∈Rk

|s(x)− s′(x)| = max

{
sup

x∈clRk

q(x),− inf
x∈clRk

q(x)

}
.

In general, optimization of polynomial over an arbitrary closed set is difficult, but many special, more

tractable cases exist, especially in practically important situations with low degree and partitions con-

sisting of boxes.

By Theorem 3.17, a sequence {sν}∞ν=1 ⊂ e-splpn(R) converging to s0 ∈ e-splpn(R) in the L∞-norm, i.e.,

∥sν − s0∥∞ → 0, also converges in the epi-distance, i.e., dl(sν , s0) → 0. The converse fails, however,

as the following counterexample on IR demonstrates. For R = {(−∞, 0), (0,∞)} and ν ∈ IN , let

sν ∈ e-spl11(R) be sν(x) = 0 if x ≤ 0 and sν(x) = x/ν otherwise. We also define s0(x) = 0 for all

x ∈ IR. Clearly, ∥sν − s0∥∞ = ∞ for all ν ∈ IN . However, for any ρ ≥ 0, dlρ(s
ν , s0) ≤ ρ/ν and therefore

dl(sν , s0) ≤ (1/ν)
∫∞
0 ρe−ρdρ = 1/ν. Consequently, dl(sν , s0) → 0, but ∥sν − s0∥∞ ̸→ 0.

Further estimates of the epi-distance are available through a supporting quantity defined next, which

as dl and dlρ, fully characterize epi-convergence; see [26, Theorem 7.58]. We let for any f, g : IRn → IR,

d̂lρ(f, g) = inf{η ≥ 0 | epi f ∩ ρIB ⊂ epi g + ηIB, epi g ∩ ρIB ⊂ epi f + ηIB}.

As dlρ, d̂lρ is closely related to the Pompeiu-Hausdorff distance; see [26, Chapters 4 and 7]. Moreover,

for f, g convex with f(0) ≤ 0 and g(0) ≤ 0, dlρ(f, g) = d̂lρ(f, g) for any ρ ≥ 0 by [26, Exercise 7.60].

The same exercise also provides the following more general estimates.

3.18 Proposition For f, g : IRn → IR not identical to ∞, the following hold with df = d(0, epi f) and

dg = d(0, epi g):

13



(i) d̂lρ(f, g) ≤ dlρ(f, g) ≤ d̂lρ′(f, g), when ρ
′ ≥ 2ρ+max{df , dg}

(ii) dl(f, g) ≥ (1− e−ρ)|df − dg|+ e−ρdlρ(f, g)

(iii) dl(f, g) ≤ (1− e−ρ)dlρ(f, g) + e−ρ(max{df , dg}+ ρ+ 1).

Computation of the epi-distance by combining results for each set in a partition is supported by the

next result, which especially is useful if the diameter

diam(Rk) := sup
x,x′∈clRk

∥x− x′∥

of Rk is small. For s ∈ e-splpn(R), we adopt the notation

sk := s+ δclRk
, where δclRk

(x) = 0 if x ∈ clRk and ∞ otherwise.

3.19 Theorem (additional epi-distance estimates) For s, s′ ∈ e-splpn(R), with R = {Rk}Nk=1, one has

(i) d̂lρ(s, s
′) ≤ max

k=1,...,N
d̂lρ(sk, s

′
k)

(ii) For any k = 1, ..., N, d̂lρ(sk, s
′
k) = 0 if epi sk ∩ ρIB = epi s′k ∩ ρIB = ∅, and otherwise

d̂lρ(sk, s
′
k)/

√
2 ≤

max

[
diam(Rk), inf

x∈clRk

s′(x)−max

{
min

x∈clRk∩ρIB
s(x),−ρ

}
, inf
x∈clRk

s(x)−max

{
min

x∈clRk∩ρIB
s′(x),−ρ

}]
.

Proof: First consider part (i). Since for all k = 1, ..., N ,

epi sk ∩ ρIB ⊂ epi s′k + d̂lρ(sk, s
′
k)IB,

we also have that (
N∪
k=1

epi sk

)
∩ ρIB ⊂

(
N∪
k=1

epi s′k

)
+ max

k=1,...,N
d̂lρ(sk, s

′
k)IB.

A similar results with the roles of sk and s′k reversed and the fact that epi s = ∪N
k=1 epi sk and likewise

for s′ yield the conclusion. Second consider part (ii). The first case follows trivially from the definition

of d̂lρ. The more involved case relies on [26, Proposition 7.61] from which we deduce that d̂lρ(sk, s
′
k)/

√
2

is no larger than the infimum of all η ≥ diam(Rk) such that for all x ∈ ρIB ∩ clRk,

inf
x′∈clRk

s(x′) ≤ max{s′(x),−ρ}+ η and also with the roles of s and s′ reversed.

Consequently, η must satisfy

inf
x′∈clRk

s(x′)−max

{
min

x∈clRk∩ρIB
s′(x),−ρ

}
≤ η and also with the roles of s and s′ reversed,

and the conclusion follows.
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We again observe that optimizing polynomials in general is challenging, but the formula in Theorem

3.19(ii) requires only minimization, in contrast to the one in Theorem 3.17(ii) where both minimization

and maximization are needed, and therefore in the case of convex sk and s′k as well as convex Rk is

easily implemented.

We end this subsection with a result that highlights the connections between epi-splines and their

representation by a finite number of parameters. We start with an intermediate result.

3.20 Proposition (functional convergence of polynomials). Suppose that qν ∈ polyp(IRn), ν ∈ IN0,

and c = (c1, c2, ..., cnp) is a basis for such polynomials, i.e., there exists a unique aν ∈ IRnp such that

qν = ⟨c(·), aν⟩, ν ∈ IN0. Then,

dl(qν , q0) → 0 ⇐⇒ aν → a0.

Proof. Since

|qν − q0| = |⟨c(·), aν − a0⟩| ≤ ∥c(·)∥∥aν − a0∥

and c is continuous (in fact polynomial), convergence aν → a0 implies uniform convergence of qν to q0

on any compact subset of IRn. Using Proposition 2.1, a standard argument shows that qν epi-converges

to q0 and therefore also dl(qν , q0) → 0. Next, we consider the converse. Suppose for the sake of a

contradiction that dl(qν , q0) → 0, but there exists a ρ > 0 and an infinite subset N∞ of IN0 such that

∥aν − a0∥ ≥ ρ for all ν ∈ N∞. Let x1, ..., xnp ∈ IRn be a collection of distinct points such that every

polynomial q ∈ polyp(IRn) is uniquely defined by the solution of the system C0a = b0(q), where C0 is

the np-by-np matrix with rows c(xi), i = 1, ..., np, and b
0(q) is the transpose of (q(x1), ..., q(xnp)). That

is, q = ⟨c(·), a⟩, where a is the solution of C0a = b0(q). Let εµ↘0, as µ→ ∞, and the open balls

Bµ
i = {(x, x0) ∈ IRn+1 | ∥(x, x0)− (xi, q0(xi))∥ < εµ}.

For each µ and i, it follows from the “hit-and-miss criterion” of [26, Proposition 4.5(a)] that there exists

a νµi such that for all ν ≥ νµi epi qν∩Bµ
i ̸= ∅. Moreover, by [26, Proposition 4.5(b)], there exists a νµ0 and

a compact set S ⊂ IRn containing x1, ..., xnp such that for all ν ≥ νµ0 , q
ν > q0−εµ/2 on S. Consequently,

with νµ = max [ νµ0 , ν
µ
1 , ..., ν

µ
np ], the graph of qν intersects all the balls Bµ

i , i = 1, . . . , np, for all µ and

ν ≥ νµ. Let (xi,ν,µ, qν(xi,ν,µ)), i = 1, . . . , np, be such intersection points, i.e., (xi,ν,µ, qν(xi,ν,µ)) ∈ Bµ
i for

i = 1, . . . , np, µ ∈ IN , and ν ≥ νµ. Let Cν,µ be the np-by-np matrix with rows c(xi,ν,µ), i = 1, ..., np,

and bν,µ(qν) be the transpose of (qν(x1,ν,µ), ..., qν(xnp,ν,µ)). For sufficiently large µ, the unique solution

aν,µ of Cν,µa = bν,µ(qν) coincides with the coefficients aν of qν for ν ≥ νµ, µ ∈ IN . Moreover, aν,µ and

a0 are the unique optimal solutions of

min
a

∥Cν,µa− bν,µ(qν)∥2 and min
a

∥C0a− b0(q0)∥2,

respectively. Since εµ ↓ 0, as µ → ∞, Cν,µ → C0 and bν,µ(qν) → b0(q0), as µ → ∞ and ν ≥ νµ,

the objective function of the first problem epi-converges to that of the second problem as µ → ∞ and

ν ≥ νµ. Theorem 7.31 of [26] then implies that aν,µ → a0 as µ → ∞, ν ≥ νµ. Consequently, there
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exists a µ̄ such that ∥aν,µ − a0∥ < ρ for all µ ≥ µ̄, ν ≥ νµ. Since aν,µ = aν for ν ≥ νµ, we have reached

a contradiction.

3.21 Theorem (convergence of the parameters). Suppose that sν ∈ e-splpn(R), with R = {Rk}Nk=1,

ν ∈ IN0, and c = (c1, c2, ..., cnp) is a basis for polynomials in polyp(IRn), i.e., for unique ak,ν ∈ IRnp ,

sν(x) = ⟨c(x), ak,ν⟩, when x ∈ Rk.

Then,

a1,ν → a1,0, ..., aN,ν → aN,0 ⇐⇒ sν → s0 uniformly on compact sets S ⊂ IRn ⇐⇒ dl(sν , s0) → 0.

Proof. Since polynomials of total order p convergence uniformly on compact sets if and only if their

coefficient converges, we obtain the first implications. In view of Proposition 3.20 and the fact that

uniform convergence implies epi-convergence [26, Proposition 7.15], the second implication holds.

4 Composite Epi-Spline

Probability density estimation [29, 34] is one of our major incentives for considering problems of the

form (FIP ) and constructing evolving approximations (FIP ν). A density is a nonnegative function

that sums up to 1 and an estimate is chosen so as to minimize some appropriate criterion; for further

details see §6.2, [29], and references therein. In addition, many “standard” densities belong to an ex-

ponential family [3], which lead us to building density estimates in terms of an exponential function

composed with an epi-spline, which are nonnegative automatically, rather than epi-splines. In other

cases, a nonlinear transformation of this kind may improve conditioning of (FIP ) and therefore facil-

itate its numerical implementation. On a theoretical level the results for such composite epi-splines,

including the formulation of (FIP ) in terms of composite epi-splines, follow rather straightforwardly

from those in §2 and §3. Still, for easy reference and a better understanding of the specific properties,

it is useful to record the central results.

We start by defining the set of composite epi-splines corresponding to a function θ : IR→ IR.

4.1 Definition (composite epi-splines). A composite epi-spline h : IRn → IR of order p ∈ IN0, with

partition R = {Rk}Nk=1 of IRn and function θ : IR→ IR, is a function

h = θ ◦ s, where s ∈ e-splpn(R).

The family of all such composite epi-splines is denoted by c-splpn(R, θ).

Composite epi-splines are generally not lsc and may be upper semi-continuous (usc) as we see next. We

denote by usc-fcns(IRn) the space of all usc f : IRn → IR, excluding f ≡ −∞. After observing that the

hypograph of a function f , hypo f =
{
(x, x0)

∣∣ f(x) ≥ x0
}
is just a mirror image of the epigraph of −f ,
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one can mimic the definitions and constructions described for lsc functions to set up the hypo-distance

dlhypo(f, g) = dl(−f,−g), between any two functions f and g and generate the hypo-topology which again

makes (usc-fcns, dl) a Polish space. A sequence of functions fν hypo-converge to f if −fν epi-converge

to −f ; see [26, Chapters 4 & 7] for a broader treatment.

4.2 Proposition For a continuous θ : IR→ IR, the following hold:

(i) If θ is increasing, then c-splpn(R, θ) ⊂ lsc-fcns(IRn).

(ii) If θ is decreasing, then c-splpn(R, θ) ⊂ usc-fcns(IRn).

Proof: These results follow as direct consequences of definitions of lsc and usc functions.

4.3 Theorem (dense approximations by composite epi-splines). Under the assumption of Theorem

3.5 and a continuous θ : IR→ IR, the following hold:

(i) If θ is increasing and extended to IR by setting θ(∞) = sup θ and θ(−∞) = inf θ, then

∞∪
ν=1

c-splpn(Rν , θ) is dense in {θ ◦ f | f ∈ lsc-fcns(IRn)} under the epi-topology.

(ii) If θ is decreasing and extended to IR by setting θ(∞) = inf θ and θ(−∞) = sup θ, then

∞∪
ν=1

c-splpn(Rν , θ) is dense in {θ ◦ f | f ∈ usc-fcns(IRn)} under the hypo-topology.

Proof: By Theorem 3.5, for every s0 ∈ lsc-fcns(IRn) there exists a sequence {sν}ν∈IN , with sν ∈
e-splpn(Rν) for all ν, such that dl(sν , s0) → 0. By Exercise 7.8 of [26], it then follows that θ ◦ sν epi-

converges to θ ◦ s0 and the first conclusion follows. The second result is a consequence of an identical

argument under a sign change.

5 Extrinsic information

Information about the nature of solutions of (FIP ) may justify the consideration of subsets of lsc-fcns(IRn)

as defined through F and F and likewise subsets of e-splpn(R). We here provide a few examples of such

information and their implementation as constraints in (FIP ν).

Domain. External information may indicate that the (effective) domain of solution functions of (FIP )

is a closed, strict subset B of IRn. Then, a partition of B instead of IRn by selecting R = {Rk}Nk=1

such that ∪N
k=1 clRk = B avoids wasting computational effort on uninteresting parts of IRn. In general,

the specific choice of R is guided by the flexibility required, with a small number of subsets needed

when solutions of (FIP ) are (nearly) polynomials of order p, and by implementation issues, which can
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become substantial if intricate subsets are combined with constraints of the type given in the remainder

of this section as well as other.

Continuity. There may be a need to limit the consideration to solution functions that are continuous

on the whole or parts of IRn. For a partition R = {Rk}Nk=1, an epi-spline defined in terms of the

polynomials qk ∈ polyp(IRn), k = 1, 2, ..., N , is continuous on the boundary between Rk and Rl, k ̸= l,

if

qk(x) = ql(x) for all x ∈ clRk ∩ clRl. (1)

Certainly, continuity in the case of p = 0 implies that qk = ql, but continuity for intricate Rk and

Rl can also force qk = ql, which may not always be desirable. Less trivial examples are provided

by partitions consisting of subsets Rk, k = 1, ..., N , that are defined by a finite number of unions and

intersections of halfspaces. We refer to such a subset as a finite polytope. The next proposition supports

the implementation of constraints with this structure.

5.1 Proposition Suppose that Rk and Rl are finite polytopes with a common facet defined by ⟨c, x⟩ =
b, and qk, ql ∈ polyp(IRn). Then, the constraints

qk(x) = ql(x) for all x ∈ clRk ∩ clRl with ⟨c, x⟩ = b (2)

are equivalent to (n− 1 + p)!/((n− 1)!p!) equality constraints on the coefficients of qk and ql.

Proof: The constraint qk(x) = ql(x) is equivalent to q(x) = 0, with q = qk − ql ∈ polyp(IRn). Since a

polynomial in polyp(IRn) vanishes on an infinite number of points if and only if all its coefficients are

zeros, the conclusion follows after observing that (n− 1 + p)!/((n− 1)!p!) is the number of coefficients

for polynomials in polyp(IRn−1), where the dimensional reduction is caused by the restriction to the

facet.

Naturally, the expressions for the finite number of equality constraints in Proposition 5.1 can get involved

and we here provide specifics only for the simple, but useful case n = p = 2 with a partition consisting

of rectangles aligned with the coordinate axes. We let qk(x) = ak0+a
k
1x1+a

k
2x2+a

k
12x1x2+a

k
11x

2
1+a

k
22x

2
2

and similarly for ql. For a facet defined by xi = b, i = 1 or 2, we obtain the three constraints

ak0 − al0 + (aki − ali)b+ (akii − alii)b
2 = 0

akj − alj + (ak12 − al12)b = 0

akjj − aljj = 0

with j = 2 when i = 1 and j = 1 when i = 2.

Continuous Differentiability. Partial derivatives of a polynomial in polyp(IRn), p ∈ IN , is a poly-

nomial in polyp−1(IRn) and continuous differentiability simply requires continuity of those derivatives.

Consequently, we ensure that an epi-spline is continuously differentiable by imposing the conditions

of the previous paragraph for each partial derivative. For the example with n = p = 2, each facet
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requires two constraints per partial derivative for a total of four constraints. Obviously, higher order

differentiability follows the same pattern.

Convexity. The convexity of an epi-spline, in general, requires the convexity of the polynomials on R1,

..., RN , and also the proper behavior on the boundary between such subsets. The following provides a

supporting result, which allows for simplifications if an epi-spline is continuously differentiable.

5.2 Proposition Suppose that s ∈ e-splpn(R), with R = {Rk}Nk=1, is defined in terms of the polyno-

mials qk ∈ polyp(IRn), k = 1, ..., N . Then, s is convex if

(i) qk are convex on convex sets Rk, k = 1, ..., N ,

(ii) for all x ∈ clRk ∩ clRl, y ∈ Rk, and k, l ∈ {1, 2, ..., N},

qk(x) = ql(x) and ⟨∇qk(x)−∇ql(x), y − x⟩ ≥ 0.

If s is continuously differentiable, then item (ii) is satisfied automatically.

Proof: Since qk is continuous on IRn, the convexity on Rk implies convexity on clRk. Consequently,

for x ∈ clRk ∩ clRl, y ∈ Rk,

qk(y) ≥ qk(x) + ⟨∇qk(x), y − x⟩
= ql(x) + ⟨∇qk(x)−∇ql(x), y − x⟩+ ⟨∇ql(x), y − x⟩
≥ ql(x) + ⟨∇ql(x), y − x⟩.

We next establish the convexity of s by showing that for x ∈ clRl and y ∈ clRk, x ̸= y and k ̸= l,

qk(y) ≥ ql(x) + ⟨∇ql(x), y − x⟩.

We start with the case when the line segment {z ∈ IRn | z = α(y − x) + x, α ∈ (0, 1)} intersects clRl

and clRk, and not clRl′ for l
′ ̸= l, k. Then, there exists an ᾱ ∈ (0, 1) such that z = ᾱ(y − x) + x is in

both clRl and clRk. From above and the convexity of ql, we obtain that

qk(y) ≥ ql(z) + ⟨∇ql(z), y − z⟩
≥ ql(x) + ⟨∇ql(x), z − x⟩+ ⟨∇ql(z), y − z⟩.

The convexity of ql also ensures that

⟨∇ql(z), y − z⟩ − ⟨∇ql(x), y − z⟩
=⟨∇ql(z)−∇ql(x), y − z⟩
=(1/ᾱ− 1)⟨∇ql(z)−∇ql(x), z − x⟩ ≥ 0,
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because (1/ᾱ− 1) > 0. Consequently,

qk(y) ≥ ql(x) + ⟨∇ql(x), z − x⟩+ ⟨∇ql(x), y − z⟩
= ql(x) + ⟨∇ql(x), y − x⟩,

which establishes the condition for the stated case. The general case is established by applying the

above arguments repeatedly at each of the finite number of points on the line segment {z ∈ IRn | z =

α(y − x) + x, α ∈ (0, 1)} where s is not continuously differentiable.

We next turn to the second claim. If s is continuously differentiable, then qk(x) = ql(x) and

∇qk(x) = ∇ql(x) for all x ∈ clRk ∩ clRl and k, l ∈ {1, 2, ..., N}, which confirms that the second

conclusion holds.

We observe that item (ii) in Proposition 5.2 relates to the monotonicity of subgradients of s.

Monotonicity. We say that a function f : IRn → IR is nondecreasing if

f(x) ≤ f(y) whenever x ≤ y,

where the last inequality is interpreted componentwise. For an epi-spline s ∈ e-splpn(R), with R =

{Rk}Nk=1 and polynomials qk ∈ polyp(IRn), k = 1, ..., N , to be nondecreasing, it is obviously needed

that qk(x) ≤ qk(y) for x, y ∈ Rk with x ≤ y. Since qk is differentiable, this is ensured by ∇qk(x) ≥ 0

for x ∈ Rk. If p = 2 and Rk is a finite polytope, then ∇qk is affine and it suffices to impose ∇qk(x) ≥ 0

for vertices x of clRk. It is clear that under continuity, boundary points are immaterial:

5.3 Proposition If s ∈ e-splpn(R), with R = {Rk}Nk=1, is defined in terms of the polynomials qk ∈
polyp(IRn), k = 1, ..., N , and is continuous, then s is nondecreasing whenever qk, k = 1, ..., N , are

nondecreasing.

In general, however, an epi-spline may not be nondecreasing even if qk, k = 1, ..., N , are nondecreasing.

If Rk, k = 1, ..., N , are finite polytopes consisting of boxes, i.e., sets of the form Rk = {x ∈ IRn | lk ≤
x ≤ uk}, then the following proposition provides guidance, where we say that Rk precedes Rl if there

exist x ∈ Rk and y ∈ Rl with x ≤ y.

5.4 Proposition If s ∈ e-splpn(R), with R = {Rk}Nk=1 consisting of boxes, is defined in terms of the

polynomials qk ∈ polyp(IRn), k = 1, ..., N , then s is nondecreasing if

(i) qk, k = 1, ..., N , are nondecreasing

(ii) qk(x) ≤ ql(x) for x ∈ clRk ∩ clRl and Rk preceding Rl.

A nonincreasing epi-spline is treated similarly with the appropriate reversal of inequalities.

Bounds. The nonnegative of an epi-spline requires conditions that ensure the nonnegativity of poly-

nomials, which except for orders 0 and 1 are nontrivial. A composition, as discussed in §4, constructed
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from the exponential function guarantees nonnegativity automatically. Specifically, a problem optimiz-

ing over h ∈ lsc-fcns(IRn), h ≥ 0, can be reformulated as one over f ∈ lsc-fcns(IRn) by setting h = ef .

Since f = −∞ is included in f ∈ lsc-fcns(IRn) and corresponds to h = 0, the reformulation is equivalent.

Consequently, instead of approximating the function h of the original problem by s ∈ e-splpn(R), s ≥ 0,

we can approximate the function f of the reformulated problem by s ∈ e-splpn(R). Nonpositivity and

other bounds are treated similarly.

Log-concavity. A function h : IRn → [0,∞), with h > 0 on a convex set X, is log-concave on X if

log h is concave on X. Again a composition is convenient. A problem optimizing over h ∈ lsc-fcns(IRn),

h ≥ 0 and log-concave on X, can be reformulated as one over f ∈ lsc-fcns(IRn), f concave on X, by

setting h = ef . The concavity constraint is then handled by ensuring convexity, as described above, of

the negative of the corresponding approximating epi-spline.

Integral conditions. Requirements that functions f ∈ lsc-fcns(IR) in (FIP ) should satisfy7

l ≤
∫
X
f(x)dx ≤ u

for an open set X ⊂ IRn is handled by ensuring that an epi-spline given by polynomials qk, k = 1, ..., N ,

and partition R = {Rk}Nk=1 satisfies

l ≤
N∑
k=1

∫
Rk∩X

qk(x)dx ≤ u.

Due to the polynomial forms, the integrals are here easily computed analytically whenever the descrip-

tions of X and Rk are “simple.”

Proximity. Given an epi-spline s0 ∈ e-splpn(R), with R = {Rk}Nk=1 and corresponding polynomials

q0k ∈ polyp(IRn), k = 1, ..., N , applications may require epi-splines in e-splpn(R) that are “close” to s0.

Constraints on norms between s0 and s ∈ e-splpn(R), given by qk ∈ polyp(IRn), k = 1, ..., N , is facilitated

by the expression

∥s− s0∥mm :=

∫
|s(x)− s0(x)|mdx =

N∑
k=1

∫
Rk

|qk − q0k|mdx.

If m is even, then the right-most integrals are easy to compute analytically as the integrand is polyno-

mial as long as Rk is “simple.”

Subgradient bounds. We recall the notion of subgradients of a function f : IRν → IR, where we need

the notation xν →
f
x to denote a sequence xν → x that also satisfies f(xν) → f(x). A comprehensive

7Since f ∈ lsc-fcns(IRn), the level sets {x ∈ IR | f(x) ≤ γ} are closed. Consequently, f is measurable and for
open sets X ⊂ IRn, the integrals

∫
X
f+(x)dx and

∫
X
f−(x)dx, with f+ = max{0, f} and f− = max{0,−f}, are well-

defined, but possibly infinite. With the usual conventions ∞ − a = ∞, a − ∞ = −∞, and ∞ − ∞ = ∞,
∫
X
f(x)dx =∫

X
f+(x)dx−

∫
X
f−(x)dx is therefore well-defined.
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treatment of the topic is found in [26, Chapter 8]. For a function f : IRn → IR and v, x ∈ IRn with f(x)

finite, we say that

(i) v is a regular subgradient of f at x, if

lim inf
y→x,y ̸=x

f(y)− f(x)− ⟨v, y − x⟩
∥y − x∥

≥ 0,

with the set of all regular subgradients denoted by ∂̂f(x);

(ii) v is a subgradient of f at x if there are sequences xν →
f
x and vν → v, vν ∈ ∂̂f(xν), with the set

of all subgradients denoted by ∂f(x).

Connections between the subgradients are summarized next.

5.5 Proposition Suppose that s ∈ e-splpn(R) and x ∈ IRn. Then, ∂̂s(x) and ∂s(x) are closed subsets

of IRn, ∂̂s(x) is convex, and

∂̂s(x) ⊂ ∂s(x) ̸= ∅,

with equality holding if s is regular8.

Proof: The only part that requires a proof is the claim about nonemptiness. Let R = {Rk}Nk=1 and s

be defined in terms of qk ∈ polyp(IRn), k = 1, ..., N . For given x ∈ IRn, let k ∈ {1, ..., N} be such that

s(x) = qk(x) and x ∈ clRk. There exists a sequence x
ν → x with xν ∈ Rk. Since∇qk(xν) → ∇qk(x) and

{∇qk(xν)} = ∂̂s(xν), ∇qk(x) ∈ ∂s(x) and ∂s(x) is therefore nonempty. The remaining claims are direct

consequences of [26, Theorem 8.6 and Corollary 8.11] due to the finiteness and lower semicontinuity of

s.

Constraints on subgradients are supported by the following results.

5.6 Theorem (subgradients) Suppose that s ∈ e-splpn(R), with R = {Rk}Nk=1 consisting of Clarke

regular9 sets clRk, k = 1, 2, ..., N , is continuous and defined in terms of qk ∈ polyp(IRn), k = 1, ..., N .

Then, for a nonempty and closed S ⊂ IRn,

∇qk(x) ∈ S for x ∈ Rk, k = 1, ..., N ⇐⇒ ∂s(x) ⊂ S for x ∈ IRn.

Proof: Since ∂s(x) = {∇qk(x)} for x ∈ Rk, the implication from right to left follows trivially. Next,

we consider the converse. Let x ∈ IRn and ∂̂s(x) ̸= ∅. If ∂̂s(x) = {v}, i.e., is a singleton, then there

exists a k and xν → x with xν ∈ Rk and ∇qk(xν) → v. Since ∇qk(xν) ∈ S and S is closed, it follows

that v ∈ S. Now, suppose that ∂̂s(x) is not a singleton and let v ∈ ∂̂s(x) be arbitrary. For the sake

8We recall that a function f : IRn → IR is regular if for every x ∈ IRn, epi f is Clarke regular at (x, f(x)); see the next
footnote and [26, Definitions 6.4,7.25]. In particular, if f is convex, then it is regular.

9A set A ⊂ IRn is Clarke regular if at all x ∈ A, (i) A∩B is closed for some closed neighborhood N of x and (ii) every
normal vector v of A at x is regular, i.e., ⟨v, y− x⟩ ≤ o(∥y− x∥) for y ∈ A. For example, if A is locally convex at x for all
x ∈ A, then A is regular; see [26, Definitions 6.3 and 6.4].
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of a contradiction, suppose that v ̸∈ S. Then, since clRk, k = 1, ..., 2, are Clarke regular there exist

k∗ ∈ {1, ..., N}, h ∈ IRn, δ > 0, and t∗ > 0 such

x+ th ∈ Rk∗ and s(x+ th) = qk∗(x+ th) for all t ∈ [0, t∗]

and

⟨v −∇qk∗(x), h⟩ ≥ δ∥h∥,
where the last inequality is a consequence from the fact that k∗ can be selected such that v ̸= ∇qk∗(x).
Let ε ∈ (0, δ) and tε ∈ (0, t∗) be such that

|qk∗(x+ th)− qk∗(x)− ⟨∇qk∗(x), th⟩| ≤ εt∥h∥ for all t ∈ (0, tε),

which follows from the smoothness of qk∗ . Using these facts, we obtain that

s(x) + ⟨v, th⟩ = s(x) + ⟨v −∇qk∗(x), th⟩+ ⟨∇qk∗(x), th⟩
≥ qk∗(x) + ⟨∇qk∗(x), th⟩+ δt∥h∥
≥ s(x+ th) + (δ − ε)t∥h∥

for all t ∈ (0, tε). Consequently,

s(x+ th)− s(x)− ⟨v, th⟩
t∥h∥

≤ −(δ − ε) < 0

for all t ∈ (0, tε), which contradicts the assumption that v is a regular subgradient. Since the situation

with ∂̂s(x) = ∅ is trivial, this establishes that ∂̂s(x) ⊂ S for all x ∈ IRn. Finally, we consider v ∈ ∂s(x)

for an arbitrary x ∈ IRn. Then, by definition, there exists xν → x and vν → v, with vν ∈ ∂̂s(xν). Since

∂̂s(xν) ⊂ S for all ν, v ∈ S due to the closeness of S, which completes the proof.

In view of the preceding results, it is clear that applications demanding constraints on the size of

subgradients of an epi-spline s ∈ e-splpn(R) are satisfied by imposing constraints on gradients of the

corresponding polynomials qk ∈ polyp(IRn) on Rk. The partial derivatives of qk would then be in

polyp−1(IRn), which generally would require an infinite number of constraints to ensure the inclusion

in a set for all x ∈ Rk. However, if p ≤ 2 and Rk is a finite polytope, then it suffices to enforce the

constraints at the vertices of clRk.

6 Applications

We illustrate epi-splines through a series of examples arising in response surface construction and proba-

bility density estimation. Focusing on second-order epi-splines in two, occasionally three, dimensions, it

suffices to represent polynomials using the bases (1, x1, x2, x
2
1, x1x2x

2
2) and (1, x1, x2, x3, x

2
1, x1x2, x

2
2, x1x3,

x2x3, x
2
3) for two and three dimensions, respectively. Numerical examples in one dimension are found

in [30, 29, 28, 33]. We only consider partitions of domains of interest consisting of rectangles of equal

size. Though, the number of rectangles varies. CPLEX (12.5.1.0) and CONOPT (3.15L) solve resulting

linear and nonlinear programs, respectively, on a 64-bit Windows 7 laptop running at 2.60GHz, with

4GB RAM, after they are formulated in GAMS (24.1.3).
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Figure 2: Logarithm example: actual function (a), randomly generated data (b), lsc epi-spline (c), and
continuous epi-spline (d).
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(a) (b)

Figure 3: Logarithm example: nondecreasing continuous epi-splines (a) and also with s(0.1, 0.1) ≤ −1.5
(b).

6.1 Response Surface

We reconstruct four functions based on observations of the functions at a finite number of points and

extrinsic information about the smoothness of the functions and other factors.

Logarithmic function. Suppose that f(x) = log(x1 + x2) defined on the domain [0, 3]2; see Figure

2(a). Relying on observed function values at 25 randomly generated points according to a uniform

distribution on [0, 3]2 (see Figure 2(b)) and a partition with N = 25 open rectangles, we obtain the

least-squares minimizing epi-splines of Figures 2(c), 2(d), and 3. All the fits achieve essentially a zero

error at the 25 data points, but the values of the epi-splines at other points depend on the extrinsic

information included. Figure 2(c) shows the fit for “unconstrained” lsc epi-splines. The fit improves

significantly when constrained to continuous epi-splines as described in §5; see Figure 2(d). We achieve

further improvement after additionally restricting to the nondecreasing epi-splines (Figure 3(a)) and

to a function value of no more than −1.5 at (0.1, 0.1) (Figure 3(b)). The actual value f(0.1, 0.1) = −1.6.

Inverse function. Suppose that f(x) = 1/(x1x2) defined on the domain [−0.5, 0.5]2; see Figure 4(a)

for a color contour plot, with red and blue indicating areas with high and low function values, respec-

tively, and white corresponding to values above 100 or below −100. We adopt a minimum absolute

deviation criterion and unconstrained lsc epi-splines. For N = 400 and 900 randomly generated data

points from a uniform distribution on the domain, we obtain the epi-spline of Figure 4(b). The total

absolute deviation across the data points is only 6.0, but errors appear elsewhere as the “granular”

picture indicates. Figure 5 shows epi-splines based on 2500 data points. In some sense, the fit improves

as indicated by Figure 5(a). However, total absolute deviation increases to 6 ·105 as the partition is not

fine enough to capture the large variation of f near the origin. The situation improves with a finer parti-
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(a) (b)

Figure 4: Inverse example: actual function (a) and epi-spline from 900 points (b).

tion of N = 900, which results in an essentially negligible total absolute deviation of 1.4; see Figure 5(b).

Trigonometric function. Suppose that f(x) = (cos(πx1) + cos(πx2))
3 defined on [−3, 3]2; see Fig-

ure 6(a). We rely on continuous epi-splines and a partition with N = 400. Based on 900 uniformly

distributed data points and a max-deviation criterion, we obtain the epi-spline fit of Figure 6(b). Max-

imum and average errors across the data points are 0.415 and 0.313, respectively. Mean-square and

absolute deviation criteria give similar results. A relaxation of the continuity requirement results in

essentially perfect interpolation at the expense of a more “rugged” fit.

We also examine the 3-dimensional function f(x) = (cos(πx1)+cos(πx2)+cos(πx3))
3 defined on [−3, 3]3

and 27,000 data points uniformly generated. Again relying on continuous epi-splines, but now with a

partition using N = 8000, we obtain maximum and average errors over the data points of 5.16 and

1.68, respectively. The resulting linear program consists of 80,001 variables, 136,800 equality con-

straints (including redundancies), and 54,000 inequality constraints (reduced dual LP actually solved

has 27,086 rows, 111,402 columns) and solves in 27 seconds using the “barrier” option in CPLEX. A

switch to an absolute deviation criterion yields maximum and average errors of 7.74 and 1.49, respec-

tively, and solves in 69 seconds. When relaxing the continuity constraints, errors are driven to near zero.

Sinc function. Suppose that f(x) = sin(π∥x∥)/(π∥x∥) for x ̸= 0 and f(x) = 1 otherwise. We use the

least-squares criterion and continuously differentiable epi-splines. Figure 7 depicts the actual function

in part (a) as well as epi-splines estimates based on N = 400 and 900 randomly generated data points

from a uniform distribution on [−5, 5] × [−5, 5] in part (b) and N = 225 and 600 points in part (c).

The mean-squared error in both cases is 0.25.
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(a) (b)

Figure 5: Inverse example: using 2500 points, epi-splines with N = 400 (a) and N = 900 (b).

(a) (b)

Figure 6: Trigonometric example: actual function (a) and epi-spline (b).
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Figure 7: Sinc example: actual function (a) and epi-spline from 900 (b) and 600 (c) points.
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6.2 Probability Density Estimation

Probability density estimation is another arena where epi-splines show promise. We refer to [29] for an

in-depth study of one-dimensional density estimation. We here concentrate on two dimensions. Since

densities are nonnegative functions, we rely on composite epi-splines c-spl22(R, exp), i.e., exponential
epi-splines of the form h = e−s, with s ∈ e-spl22(R).

(a) (b)

Figure 8: Normal Example: actual density (a) and continuously differentiable exponential epi-spline
for sample size 100 (b).

For a sample X1, X2, ..., Xν that is independently and identically distributed as a “actual distribution,”

it is well-known (see for example [29]) that a constrained maximum likelihood estimator is an optimal

solution of

max
1

ν

ν∏
i=1

f(Xi)1/ν such that f ≥ 0,

∫
f(x)dx = 1, f ∈ F ,

where F is an appropriately selected space of functions on IRn. Passing to exponential epi-splines, we

arrive after equivalently maximizing the logarithm of the objective function at an approximate problem

min
1

ν

ν∑
i=1

s(Xi) such that

∫
e−s(x)dx = 1, s ∈ F ν ∩ Sν

where Sν = e-splpn(R)∩lsc-fcns(IRn) and F ν is a subset of the lsc functions s that satisfies
∫
e−s(x)dx = 1,

but could include numerous other restrictions exemplified below and in §5. A solution s of this problem

provides a density estimator through the composition e−s, where we observe that the nonnegativity is

automatically satisfied. We refer to [29] for further details including simplifications in the approximate

problem that ensure its convexity. Two numerical examples illustrate the approach.
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Figure 9: Normal Example: Sample of size 25 (a) and corresponding exponential epi-spline (b).

Normal density example. Suppose that the actual density h0 is a bivariate normal with mean vec-

tor (1, 2) and variance-covariance matrix (1, 0.5; 0.5, 2); see Figure 8(a). We would like to reproduce

this density using a sample of size ν. The partition R consists of N = 100 rectangles of equal size

covering a domain defined in each dimension to range from two empirical standard deviations below

the lowest observed value to two empirical standard deviations above the highest value. In addition

to constraints specified below, we let second-order partial derivatives of the epi-splines to be in the

range [−1000, 1000]. For a sample size of ν = 10, 000, exponential epi-spline estimates are visually

good (not displayed) regardless of the combination of additional constraints on continuity, continuous

differentiability, and log-concavity with mean-square errors MSE =
∫
(e−s(x) − h0(x))2h0(x)dx of ap-

proximately 40. A reduced sample size of ν = 100, provides a MSE of 6.1 · 105 and a poor visual fit

under a continuity constraint. Under continuous differentiability, the MSE improves to 2.1 · 103 and

a good visual fit; see Figure 8(b). However, the estimate is not log-concave. An additional constraint

would enforce such a condition easily, but instead of displaying that case we also reduce the sample

size. Under the extremely small sample with ν = 25 illustrated in Figure 9(a), a satisfactory fit with

MSE of 5.3 · 103 is obtained under continuous differentiability and log-concavity constraints as seen

in Figure 9(b). Of course, the normal density is especially well suited for estimation by second-order

exponential epi-splines. In fact, it suffices to consider a partition consisting of a single open set, IRn.

We next consider a more challenging situation.

Uniform Mixture Example. Suppose that the actual density h0(x) = 4 if x = (x1, x2) satisfies

(k − 1)0.2 ≤ x1 ≤ (k − 1)0.2 + 0.1, k = 1, 2, ..., 5, and (l − 1)0.2 ≤ x2 ≤ (l − 1)0.2 + 0.1, l = 1, 2, ..., 5,

and h0(x) = 0 otherwise; see Figure 10(a) for a color contour plot. This “uniform mixture” density is

estimated by an exponential epi-spline defined on [0, 1]2. Additional information about the support of

the actual density is ignored. We assume that the partial derivatives of the epi-splines on the open sets
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(a) (b)

Figure 10: Uniform Example: True density (a) and exponential epi-spline with N = 2500 (b).

of the partition are in the range [−1, 1] and rely on a sample of size ν = 2500. Figure 10(b) shows an

exponential epi-spline estimate for a partition with N = 2500. Although the MSE is large, the essential

nature of the density is captured. The fit is obtained in 693 seconds after solving a problem with 15,000

variables, a convex objective function, and 40,000 linear inequality constraints10. Figure 11 provides

similar results, obtained in 30 seconds, for N = 625 in a contour plot (a) and a titled view (b).

(a) (b)

Figure 11: Uniform Example: Exponential epi-spline with N = 625 in contour (a) and tilted view (b).

10We refer to [29] for a convex formulation that removes the constraint that ensures that the estimate integrates to one
and replaces it by a penalty term in the objective function.
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Erratum: Multivariate epi-splines and evolving function identification problems

Johannes O. Royset Roger J-B Wets

Operations Research Department Department of Mathematics
Naval Postgraduate School University of California, Davis
joroyset@nps.edu rjbwets@ucdavis.edu

Abstract. The definition of infinite refinement in Royset & Wets (Multivariate epi-splines and evolv-
ing function identification problems, Set-Valued and Variational Analysis, 2016) needs to be strengthen
to exclude refinements, as illustrated by an example, that would not become fine enough.

Date: April 6, 2016

The definition of an infinite refinement needs to be adjusted as follows:

3.4 Definition (infinite refinement) A sequence {Rν}∞ν=1 of partitions of a closed set B ⊆ IRn, with

Rν = {Rν
k}N

ν

k=1, is an infinite refinement if

for every x ∈ B and ε > 0, there exist ν̄ ∈ IN and δ ∈ (0, ε) such that

Rν
k ⊂ IB(x, ε) for every ν ≥ ν̄ and k satisfying Rν

k ∩ IB(x, δ) ̸= ∅.

The reason is that the corresponding definition in [1] allows for the possibility to choose a somewhat

pathological refinement that would fail to become sufficiently “small” as illustrated next:

Example. Let B = [0,∞) ⊂ IR and the infinite refinement be partitioning (0,
√
ν) mostly into segments

of length 1/
√
ν, with the exception that a portion of the segment nearest the origin is added to the

final segment covering (
√
ν,∞). Specifically, we let Nν = ν + 1, Rν

1 = (0, 1/(4
√
ν))∪ (1/(2

√
ν), 1/

√
ν),

Rν
k = ((k− 1)/

√
ν, k/

√
ν) for k = 2, ..., Nν − 1, and Rν

Nν = (
√
ν,∞)∪ (1/(4

√
ν), 1/(2

√
ν)). Clearly, for

every ν ∈ IN , {Rν
k}N

ν

k=1 is a partition of B. Also, {Rν}∞ν=1 would be an appropriate infinite refinement

of B according to [1], which requires only:

for every x ∈ B and ε > 0, there exists ν̄ ∈ IN such that

Rν
k ⊂ IB(x, ε) for every ν ≥ ν̄ and k satisfying x ∈ clRν

k.

We establish that this requirement is satisfied: Let x ∈ B and ε > 0 be arbitrary. First, suppose that

x = 0. Then, set ν̄ ≥ 1/ε2. In this case, we have that x ∈ clRν
1 for all ν. Since Rν

1 ⊂ [0, 1/
√
ν] ⊂ [0, ε]

1



for all ν ≥ ν̄, the requirement Rν
1 ⊂ IB(x, ε) is satisfied. Second, suppose that x > 0. Then, set

ν̄ > max{4/ε2, x2, 1/(4x2), 1}. In this case, 1/(2
√
ν) < x <

√
ν for ν ≥ ν̄. Consequently, x ̸∈ clRν

Nν

for any ν ≥ ν̄. We therefore have that for each ν ≥ ν̄, there exists a kν(x) ∈ {1, 2, ..., Nν − 2} such

that x ∈ clRν
kν(x) ∪ clRν

kν(x)+1 and x ̸∈ clRν
k for all k ∈ {1, 2, ..., Nν} \ {kν(x), kν(x) + 1}. Since for

each ν ≥ ν̄, Rν
kν(x) ∪R

ν
kν(x)+1 is contained in a line segment of length at most ε the requirement holds.

We have shown that {Rν}∞ν=1 satisfies the condition of the original definition in [1]. This (pathologi-

cal) infinite refinement makes the proofs of Theorems 3.5, 3.8, and 3.11 in [1] invalid due to the fact

that there are points in Rν
Nν that are arbitrarily closed to 0, but Rν

Nν is not becoming arbitrarily

“small.” The example fails the condition of the adjusted definition given here as there is no δ ∈ (0, ε)

such that Rν
Nν ∩ IB(0, δ) = ∅ for all ν. We observe that all “natural” partitions such as the one with

Rν
k = ((k − 1)/

√
ν, k/

√
ν) for k = 1, ..., Nν − 1, and Rν

Nν = (
√
ν,∞) satisfies the condition of the

adjusted definition.

With the adjusted definition of infinite refinement, Theorems 3.5, 3.8 and 3.11 in [1] are correct as

stated. However, we provide below an updated version of the proof of Theorem 3.5 to pinpoint the

“sticky” issue; some typos are also corrected and we provide some additional explanation. Corrected

proofs of Theorems 3.8 and 3.11 follow the same pattern.

3.5 Theorem (dense approximation) For any p ∈ IN0 and {Rν}∞ν=1, an infinite refinement of a closed

set B ⊆ IRn,
∞∪
ν=1

e-splpn(Rν) is dense in lsc-fcns(B).

Proof: Let s0 ∈ lsc-fcns(B) and Rν = {Rν
k}N

ν

k=1. It suffices to construct a sequence of epi-splines of

order p = 0. For every ν ∈ IN and Rν
k, k = 1, 2, ..., Nν , we define

σν(Rν
k) :=


infx∈clRν

k
s0(x) if infx∈clRν

k
s0(x) ∈ [−ν, ν]

ν if infx∈clRν
k
s0(x) > ν,

−ν otherwise

and construct sν : IRn → IR as follows:

sν(x) := min
k=1,2,...,Nν

{
σν(Rν

k)
∣∣∣ x ∈ clRν

k

}
, x ∈ B,

and sν(x) = ∞ for x ̸∈ B. Clearly, sν is constant on each Rν
k, k = 1, 2, ..., Nν and liminfx′→x s

ν(x′) =

sν(x) for all x ∈ IRn. Hence, sν ∈ e-spl0n(Rν) and consequently also in e-splpn(Rν) for p ∈ IN . We next

show that the two conditions of Proposition 2.1 in [1] holds. Let x ∈ B and ε > 0 be arbitrary. By lower

semicontinuity of s0 there exists δ > 0 such that s0(z) ≥ s0(x)−ε whenever z ∈ IB(x, δ). Since {Rν}∞ν=1

is an infinite refinement, there also exist ν̄ and γ ∈ (0, δ) such that Rν
k ⊂ IB(x, δ) for every ν ≥ ν̄ and

k satisfying Rν
k ∩ IB(x, γ) ̸= ∅. Hence, for y ∈ IB(x, γ/2) ∩ B, sν(y) ≥ mink{min{ν, infz∈clRν

k
s0(z)} :

y ∈ clRν
k} ≥ min{ν, s0(x) − ε} for all ν ≥ ν̄. (It is the existence of a neighborhood of x on which

2



this inequality holds that might fail in the original proof resulting in the possibility that the following

inequality would not hold.) Since sν(y) = ∞ for y ̸∈ B, we thus have that for every sequence xν → x,

liminfν s
ν(xν) ≥ liminfν min{ν, s0(x)− ε} = s0(x)− ε.

Since ε is arbitrary, liminf sν(xν) ≥ s0(x). Because B is closed, this inequality also holds for x ̸∈ B.

Thus, condition a) of Proposition 2.1 in [1] is established. For b), simply set xν = x for all ν. If x ̸∈ B,

then sν(xν) = s0(x) = ∞. If x ∈ B, then sν(x) ≤ max{−ν, s0(x)}. From this follows that for x ∈ IRn,

limsupν s
ν(xν) = limsupν s

ν(x) ≤ s0(x),

which establishes part b) of [1, Proposition 2.1] and concludes the proof.
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